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We discuss a general and efficient approach for “bootstrapping” short-time correlation data in chaotic or
complex quantum systems to obtain information about long-time dynamics and stationary properties, such as
the local density of states. When the short-time data are sufficient to identify an individual quantum system, we
obtain a systematic approximation for the spectrum and wave functions. Otherwise, we obtain statistical
properties, including wave function intensity distributions, for an ensemble of all quantum systems sharing the
given short-time correlations. The results are valid for open or closed systems, and are stable under perturba-
tion of the short-time input data. Numerical examples include quantum maps and two-dimensional anharmonic
oscillators.
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I. INTRODUCTION

When a quantum system is known to have a chaotic clas-
sical limit, the simplest description of its eigenvalues, eigen-
states, and dynamics is given by the universal predictions of
random matrix theorysRMTd f1g and the closely related ran-
dom wave hypothesisf2g. Recently, however, there has been
increased interest in understanding the deviations from RMT
that are quite sizable in many systems of interest and are
often due to short-time dynamical effects. RMT assumes im-
plicitly that under time evolution, any initial state immedi-
ately spreads randomly over the entire available Hilbert
space; any realistic chaotic dynamics, however, maintains at
short times information about the initial state and only after
some finite mixing timeTmix does the dynamics become truly
random.

For the purpose of describing spectral statistics, such as
the distribution of level spacings, the above consideration
may easily be taken into account by noting that RMT predic-
tions are valid only inside energy windows of size less than a
ballistic Thouless energyEc," /Tmix. The situation with
wave functions is not so simple, as short-time dynamical
effects can lead to large deviations from RMT not only for
energy-averaged quasimodes but also for individual eigen-
states.

Any short unstable periodic orbit is one obvious example
of a nonrandom dynamical feature that is known to cause
significant deviations from RMT statistics in the eigenstates.
It has been shown that the “scarring” of individual wave
functions by a typical periodic orbit is anOs"0d effect that
persists in the semiclassical limit, as measured by the distri-
bution of wave function intensities on the periodic orbit in
Husimi phase spacef3g. Using a linearization of the dynam-
ics around the specific orbit, the distribution of quantum in-
tensities on or near the orbit may be obtained semiclassically
as a function of the classical monodromy matrix, and various
moments of the distribution, such as the inverse participation
ratio, may be expressed analyticallyf4g. The scarring effect
has been studied experimentally and numerically in a wide
variety of systemsf5g, and may have consequences for the
conductance through a resonant tunneling diode or a ballistic
quantum dotf6,7g.

The imprint of short-time dynamics on eigenstate struc-
ture is not limited to situations where the short-time dynam-

ics is related to classical unstable periodic orbits. For ex-
ample, scarlike resonances related to diffractive trajectories
have been observed in a two-dimensional electron gas
s2DEGd conductance experimentf8g. The approach of using
short-time behavior to understand eigenstate structure and
statistics has been used successfully in many situations
where a proper classical limit does not exist, such as two-
body random interactions in a many-fermion systemf9g or
dynamics on a quantum graph or latticef10g, as well as in
pseudointegrable systems where the Lyapunov exponent
vanishesf11g. Furthermore, short-time dynamical informa-
tion necessarily implies deviations from RMT not only for
individual wave function intensities, but also for spatial or
phase space correlationsf12g.

Our aim here is to discuss a systematic, general, and ef-
ficient framework for studying the constraints that short-time
correlations impose on the eigenstate structure, regardless of
whether such short-time correlations can be computed semi-
classically. We allow ourselves to focus on one or an arbi-
trary number of initial wave packets, and the calculations
may be performed equally well in closed or open systems, as
there is no assumption of unitarity in the dynamics. We ex-
plicitly allow for the presence of errors in the short-time
correlations, and demonstrate the stability of the results with
respect to such errors.

In the context of extracting stationary properties from a
time-domain correlation function, we mention the important
work that has been done by Mandelshtam and co-workers
using the “filter diagonalization” methodf13g. In that ap-
proach, one typically begins with a single wave packet, and
spectral information can in principle be computedexactly
when the correlation function is known for at leastN times,
whereN is the Hilbert space dimension. In the bootstrapping
approach, we use multiple initial wave packets, and we do
not assume exact finite dimensionality of the Hilbert space.
Thus our goal is not an exact solution of the spectral analysis
problem, but rather an increasingly good approximation as
the amount of input data increases. Of course, exact solutions
are not possible in any case in the presence of noise or nu-
merical instability, so in practice regularization must be per-
formed, yielding comparable results for the two approaches.
One advantage of the bootstrapping approach is that the lin-
ear algebra involved requiresM 3M matrices only, whereM
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is the number of initial wave packets, allowing the problem
to scale very well computationally for large system sizes and
long times.

The paper is organized as follows. In Sec. II, we define
the quantities of interest in the time and energy domain, and
obtain general expressions for the bootstrapped correlation
function and spectrum. Section III serves to define two sets
of numerical models, which may be used to illustrate the
general formalism. Next, in Sec. IV, we discuss convergence
properties of the bootstrapping approximation, including a
treatment of stability in the presence of noise. In Sec. V, we
examine how bootstrapping may be used to compute statis-
tical quantities of interest, including wave function intensity
distributions and intensity correlations, using a very small
amount of time-domain data as input. Finally, the key con-
clusions are briefly summarized in Sec. VI.

II. BOOTSTRAPPING FOR CORRELATION
FUNCTIONS AND SPECTRUM

We begin by considering a set ofM wave packetsfi, for
simplicity taking the wave packets to be orthonormalsbut
not a complete setd. In practice, the choice offi will be
dictated by the physics of interest. For example, thefi may
be chosen as position eigenstates if we are interested in
position-space wave function structure, or momentum eigen-
states for scattering behavior, or Gaussian wave packets for
analyzing the effects of classical periodic orbits. In a many-
body problem, thefi may usefully be taken as the noninter-
acting product states.

The quantity of interest in the time domain is the correla-
tion function

Cijstd = kfiue−iĤt/"uf jl, s1d

whose diagonal elementsCiistd constitute the autocorrelation
functions for the individual wave packets. Knowledge of the
exact correlation function for all discrete timest=mT0 leads
by Laplace transform to the discrete-time Green’s function

GijsEd = si"d−1T0o
m=0

` FeiEmT0/" −
1

2
dm0GCijsmT0d

= si"d−1T0kfiu
1

1 − eisE−ĤdT0/"
−

1

2
uf jl s2d

<si"d−1E
0

`

dt eiEt/"Cijstd = kfiu
1

E − Ĥ + ie
uf jl, s3d

where the continuous-time limit of Eq.s3d is obtained for
T0!" /dE, and dE is a typical energy spread in the wave
packets.

We will see that it proves useful to decompose the return
amplitude of Eq.s1d at time t into a special “new” compo-
nent that is returning for the first time to the subspace
spanned by theM wave packetsfi and the remainder due to
propagation that has revisited this subspace at least once at
time steps in between 0 andt. In spirit, this is reminiscent of
theT-matrix approach of Bogomolnyf14g, where an integral
kernel is defined in terms of all classical trajectories that start

on a given Poincaré surface of section and return to the sur-
face of section without intersecting it at intermediate times.
The T matrix is defined directly in the energy domain
whereas we begin our analysis in the time domain and trans-
form to the energy domain later on. The decomposition used
here also resembles somewhat the one used in the quantita-
tive analysis of periodic orbit scarringf3g, where it is helpful
to separate terms in the return amplitude that are associated
with paths staying on the periodic orbit from terms associ-
ated with homoclinic paths that leave the orbit once and first
return at some later time. Of course, in the case we consider
here theM-dimensional subspace spanned by the wave pack-
etsfi will not in general have any connection with a particu-
lar classical structure such as a periodic orbit or surface of
section. Instead the choice offi is governed either by our
exact or approximate knowledge of the correlation function
for those initial and final states or by an interest in extracting
wave function structure information in a specific basis or
phase space region. Furthermore, no semiclassical approxi-
mation is implicit in the method we develop here, although
we will see below that the approach can be extended to situ-
ations where the correlation function information used as
input is only approximate, as would be the case for example
when a semiclassical propagator is used.

Formally, the new recurrencesBijsmd at time t=mT0 may
be defined as

Bijsmd = kfiue−iĤT0/"fs1 − P̂de−iĤT0/"gm−1uf jl, s4d

where

P̂ = o
k=1

M

ufklkfku s5d

is the projection onto the subspace of interest. More explic-
itly, these new recurrences may be computed from the full
Cij amplitudes as

Bijsmd = 5CijsT0d, m= 1,

CijsmT0d − o
p=1

m−1

o
k=1

M

BikspdCkj„sm− pdT0…, mù 2.6
s6d

The full correlation function is then given by a convolution,

CijsmT0d = o
p=1

m

o
k=1

M

BikspdCkj„sm− pdT0… s7d

or, in matrix notation,

CsmT0d = o
p=1

m

BspdC„sm− pdT0… = Bsmd + o
p=1

m−1

BspdBsm− pd

+ o
p=1

m−2

o
p8=1

m−p−1

BspdBsp8dBsm− p − p8d + ¯ , s8d

whereCs0d is always the identity matrix. The matrixBsmd
records the amplitude that at themth step returns for the first
time to the subspace spanned by thefi, while terms in Eq.
s8d involving a product ofn B matrices correspond to pro-
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cesses where amplitude leaves and returnsn times to the
same subspace overm steps. In the energy domain,

GijsEd = si"d−1T0kfiu
1

1 − B̃sEd
−

1

2
uf jl, s9d

where

B̃sEd = o
m=1

`

eimT0E/"Bsmd. s10d

We are, however, interested in the information that can be
extracted from knowledge of the correlation function at a
finite set of timest only, sayt=mT0 for m=1,… ,L, possibly
in the presence of noise. If we assumeCsmT0d is known only
for times tøTmax=LT0, i.e., for 1ømøL, then we may
compute the new recurrencesBsmT0d only for 1ømøL us-
ing Eq. s6d. It is convenient to define

BL,tsmd = HBsmde−mT0/t, 1 ø mø L,

0 otherwise.
J s11d

The cutoff timet, which can be much larger than the boot-
strap timeTmax=LT0, serves as a smoothing scale in the en-
ergy domain, and its significance will be discussed in Sec. IV
below. Given just the matricesBL,tsmd, we may compute a
“bootstrapped” approximation to the full correlation function
at all times:

CL,tsmT0d = o
p=1

m

BL,tspdCL,t„sm− pdT0…

= BL,tsmd + o
p=1

m−1

BL,tspdBL,tsm− pd

+ o
p=1

m−2

o
p8=1

m−p−1

BL,tspdBL,tsp8dBL,tsm− p − p8d

+ ¯ , s12d

having the propertyCL,tsmT0d=CsmT0de−mT0/t for møL. In

the energy domain,B̃L,tsEd may be defined as a Laplace
transform of BL,tsmd, in complete analogy with Eq.s10d
above.

Finally, one often encounters a “noisy” situation where
even the short-time dynamics is only approximately known.
For example, we may be interested in building up the full
dynamics using onlysemiclassicalexpressions for the propa-
gator at short times. We then have knowledge of

CesmT0d = CsmT0d + eDsmT0d s13d

for 1ømøL, whereDsmT0d are quasirandom, uncorrelated
error matrices ande characterizes the relative size of the
error. Given this input data we may calculate approximate
“new” recurrencesBL,t,esmT0d by extending the exact for-
mula of Eq.s6d,

BL,t,esmd =5
CesT0de−T0/t, m= 1,

CesmT0de−mT0/t − o
p=1

m−1

BL,t,espdCe„sm− pdT0…e
−sm−pdT0/t, 2 ø mø L,

0 otherwise.
6 s14d

The “bootstrapped” long-time evolutionCL,t,e is given by
iterating these approximately known short-time “new” recur-
rences analogously to Eq.s12d,

CL,t,esmT0d = o
p=1

m

BL,t,espdCL,t,e„sm− pdT0…

= BL,t,esmd + o
p=1

m−1

BL,t,espdBL,t,esm− pd

+ o
p=1

m−2

o
p8=1

m−p−1

BL,t,espdBL,t,esp8dBL,t,esm− p − p8d

+ ¯ . s15d

Again, by construction the bootstrapping procedure
simply reproduces the noisy input data for timest below the
bootstrap time Tmax, i.e., CL,t,e=Cee

−mT0/t for møL.
However, bootstrapping allows us also to learn something
about longer timest.Tmax using the short-time correlation
function.

III. NUMERICAL MODELS

A. Quantum maps

Classical and quantum chaotic maps in one dimension are
often used as the simplest examples for illustrating general
chaotic behavior, and share many scaling and other physical
properties of two-dimensional Hamiltonian dynamicsf15g.
Discrete-time maps may be thought of as arising from a
continuous-time Hamiltonian dynamics either via a Poincaré
surface of section or by stroboscopically viewing motion in a
periodically driven Hamiltonian. In the latter case, we may
consider

Hsq,p,td =
1

Tkick
Tspd + Vsqd o

j=−`

`

dst − jTkickd, s16d

which yields
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pj+1 = pj − V8sqjd,

qj+1 = qj + T8spj+1d, s17d

when the positionqj and momentumpj are recorded just
before kick j . The corresponding quantum evolution over
one time step is given by

Û = e−iTsp̂d/"e−iVsq̂d/". s18d

As a specific example, we may takeTspd= 1
2wpp

2

+Kpssinp− 1
2sin 2pd and Vsqd=−1

2wqq
2−Kqssinq− 1

2sin 2qd,
for a toral phase spacesq,pdP f−p ,pd3 f−p ,pd. With inte-
ger values ofwq andwp, this is a perturbed cat mapf16g:

pj+1 = pj + wqqj + Kqscosqj − cos 2qjd mod 2p,

qj+1 = qj + wppj + Kpscospj − cos 2pjd mod 2p, s19d

where nonzero values ofKq,Kp are needed to break the sym-
metries and ensure nonlinearity of the dynamics. One easily
checks that the dynamics is completely chaotic for suffi-
ciently smallKq,p.

For this compact classical phase space, the quantum evo-
lution of Eq. s18d acts on a Hilbert space of dimensionN
=2p /", the mean energy level spacing isD=2p" /NTkick
="2/Tkick, and the Heisenberg time at which levels are re-
solved isTH=NTkick. Since the map dynamics is already dis-
cretized, it is natural to use the periodTkick as the time step
T0 in the bootstrapping calculation. Without loss of general-
ity, we may choose units whereT0=Tkick=1.

B. Two-dimensional wells

As our model of a nonintegrable system with a time-
independent Hamiltonian, we use the Barbanis Hamiltonian
f17g, which describes a two-dimensional anharmonic oscilla-
tor:

Hsx8,y8,p8x,p8yd =
p8x

2

2m
+

p8y
2

2m
+

1

2
mvx

2x82 +
1

2
mvy

2y82

+ lx8y82. s20d

After a canonical transformation and an overall rescaling of
the energy, the Barbanis Hamiltonian may be rewritten as

Hsx,y,px,pyd =
px

2

2
+

py
2

2
+

1

2
x2 +

a

2
y2 +

a

2
xy2, s21d

where a is a dimensionless parameter characterizing the
shape of the well. In these dimensionless coordinates, the
metastable well has its minimum atx=y=0 and extends from
x=−1 to 1 along they=0 symmetry axis; the barrier height is
Emax=1/2. Upon quantization, one additional parameter be-
sidesa is introduced, namely, an effective" or equivalently
the number of quantum levels belowEmax.

As compared with the simple quantum map model pre-
sented above, analysis of bootstrapping in the Barbanis sys-
tem requires consideration of the following three circum-
stances, which are typical of many Hamiltonian systems:sid
time is not naturally discrete and thus an explicit choice is

needed for the discretization timeT0, sii d resonances in the
metastable well have finite intrinsic width, introducing a new
long-time scale, andsiii d classical dynamics in the well is
mixed, with the phase space at energies of interest shared by
regular islands and a chaotic sea. The implications of these
three circumstances will be discussed below, when numerical
results for bootstrapping in the Barbanis system are pre-
sented in Sec. IV B.

IV. CONVERGENCE PROPERTIES
AND SENSITIVITY TO ERROR

In this section, we examine how bootstrapping may be
used when the given information about the short-time corre-
lation function is sufficient to computesapproximatelyd the
long-time dynamics and spectrum. An alternative situation,
where the given information only restricts us to an ensemble
of possible long-time behaviors, and the objective is to ob-
tain statisticalproperties of the long-time dynamics or spec-
trum, is discussed in Sec. V.

A. Noise-free bootstrapping

We want to estimate the error made in using short-time
information up to the bootstrap timeTmax=LT0 to estimate
long-time dynamics in a chaotic system at timest@Tmax. Let
us first assume negligible noise by settinge=0 in Eq. s13d.
Clearly the error is then associated with amplitude that starts
in the subspace spanned by theM wave packetsfi and is
never captured by the short-time correlation function because
it does not return to the original subspace at any time during
the first L steps of evolution. In terms of theB matrices
discussed in the previous section, the total probability that
does not return in timeTmax=LT0 is

PsTmaxd = 1 −
1

M
o
m=1

L

Tr Bsmd†Bsmd. s22d

Mathematically, the probabilityPsTmaxd is clearly related to
the probability of remaining for at least timeTmax in a system
with M maximally coupled open decay channels. When the
dynamics is chaotic, this probability can be represented ana-
lytically as an integral in the context of random matrix
theory f18g; for our purposes it is sufficient to note that

PsTmaxd = 5e−MTmax/TH, Tmax! TH/ÎM ,

1

M + 1
sTH/TmaxdM+1, Tmax@ TH, 6

s23d

whereTH is the Heisenberg time, and the power-law long-
time limit also serves as an upper bound forPsTmaxd. Clearly,
we requireTmax.TH /M in order to recapture most of the
initial amplitude, so that the lost probability is small. We
emphasize that this estimate, based on random matrix theory,
may be used to obtain the correct scaling behavior of the lost
probability PsTmaxd with bootstrap timeTmax, even when the
prefactor in Eq.s23d is invalid due to nonrandom short-time
dynamical effects.
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The behavior of the lost probabilityPsTmaxd for small and
largeTmax is illustrated in Fig. 1. Here an average over quan-
tum maps given by Eq.s19d has been performed, withwq
=wp=1 and nonlinearity parametersKq,Kp randomly distrib-
uted between −1/2 and +1/2. We note the expected expo-
nential behavior for smallTmax, with the classical decay rate
M /TH, as well as the rapid power-law decay of the lost prob-
ability for Tmax.TH, especially in the case of multiple wave
packetsM .1.

We are interested in the error induced at long timest
@Tmax by omitting new recurrences not captured in the
short-time correlation function. At this point, we have not
introduced any smoothing of the input data, i.e.,t=` in Eq.
s11d. The typical returning amplitude at timet has completed
OsMt /THd cycles of leaving and returning to the subspace
spanned by theM wave packetsfi, i.e., in Eq.s8d the domi-
nant terms are ones involving a product ofOsMt /THd B ma-
trices. In each cycle, probability given by Eq.s23d is lost,
with the errors accumulating coherently, so that the relative
error in the matrix elements at timet@Tmax=LT0ùTH /M is
given by

Estd =
iCL,`std − Cstdi2

iCstd2i
, SMt

TH
D2

PsTmaxd, s24d

where iCstdi2=Tr Cstd†Cstd=oi j uCijstdu2. The quadratic
growth in the long-time error is clearly seen in Fig. 2 for
several choices of the bootstrapping parameters.

To find the time scaleTbreak beyond which the bootstrap-
ping procedure breaks down, we assumeTH /M øTmax
øTH /ÎM. Then, setting the right hand side of Eq.s24d to
unity and using Eq.s23d, we obtain

Tbreak, Tmax

exps 1
2MTmax/THd

MTmax/TH
. s25d

We see that including only a minimal number of new recur-
rences by settingTmax,TH /M leads to breakdown of the
bootstrapping approximation soon thereaftersTbreak,Tmaxd,
but including additional recurrences leads to exponential
growth in the accuracy of the bootstrapping approximation
and consequently to exponential increase in the breakdown
time. Of course, this exponential growth ceases at very large
values ofTmax, when the error becomes dominated by a small
fraction of eigenstates that have unusually little overlap with
the wave packetsfi. Then PsTmaxd follows the power-law
behavior of Eq.s23d, and the growth inTbreak accordingly
crosses over to a power-law behavior withTmax:

Tbreak, TH

ÎM + 1

M
STmax

TH
DsM+1d/2

s26d

for Tmax.TH. We note that the growth of the break time
Tbreakwith increasing bootstrap timeTmax remains faster than
linear except in the single-wave packet caseM =1. This su-
perlinear growth is illustrated in Fig. 3 for the case of two
wave packetssM =2d, where the break timeTbreak has been
quantified as the time scale where the relative error of Eq.
s24d reaches unity.

B. Results in the energy domain

Starting with known short-time information about the cor-
relation function, the bootstrapped long-time dynamics may
be Laplace or Fourier transformed into the energy domain to
obtain good approximations to the Green’s function, spec-
trum, or local density of states. Alternatively, the short-time
“new” recurrences may be transformed directly into the en-
ergy domain to obtain spectral information, as indicated by
Eqs. s9d and s10d. To avoid unphysical oscillations in the

FIG. 1. The lost probabilityPsTmaxd associated with eliminating
new recurrences arriving after timeTmax is plotted as a function of
Tmax for the quantum map of Eq.s19d, with wq=wp=1 and param-
etersKq,Kp uniformly distributed between −1/2 and 1/2. Squares,
circles, and triangles represent data when the number of wave pack-
ets M is M =1, 2, or 4, respectively. Open symbols are associated
with system sizeN=64 and closed symbols with system sizeN
=128. The dashed curve is the small-Tmax sclassicald limit in Eq.
s23d, while the three solid lines represent the large-Tmax power-law
falloff for M =1, 2, and 4. All quantities shown in this and subse-
quent figures are dimensionless.

FIG. 2. The ratio of the relative error in the propagator,Estd, to
the probability lost on average during each cycle of recurrences,
PsTmaxd, is plotted for timest.Tmax, M =2, several values ofTmax,
and two system sizes. All system parameters are the same as in the
previous figure. Squares, circles, and triangles correspond to
MTmax/TH=5, 10, and 20, respectively, while open and closed sym-
bols distinguish system sizeN=64 from system sizeN=128. The
solid line indicates the quadratic growth of the error consistent with
Eq. s24d.

CORRELATION FUNCTION BOOTSTRAPPING IN… PHYSICAL REVIEW E 71, 056212s2005d

056212-5



spectrum on energy scales below" /Tbreak sassociated with
the breakdown of the bootstrapping approximation at long
timesd, we impose an explicit smooth cutoff on the short-
time dynamics, in accordance with Eq.s11d. Loss of infor-
mation is minimized by choosing the cutoff timet of the
order ofTbreak, which is equivalent to Lorentzian smoothing
of the spectrum on the scale" /Tbreak.

The numerical data presented in Fig. 4 are obtained for
the Barbanis potential, with parametersa=1.1 and "
=0.0198 in Eq.s21d, corresponding to slightly over 300
quantum resonances in the metastable well. Six initial Gauss-
ian wave packets are used in the calculation, all centered at

x=0 and having an average momentum of magnitudeupu
=0.96, corresponding to an energyE=0.46. Thus, we are
viewing dynamics slightly below the top of the barrier,
Emax=0.5. The classical dynamics in the energy range con-
sidered is approximately 57% chaotic, as measured using a
Poincaré surface of section atx=0. All six initial wave pack-
ets are centered in the chaotic region of classical phase
space.

We see from the middle solid curve in Fig. 4 that most
peaks in the spectrum can readily be resolved using boot-
strapping, taking correlation information up through the
Heisenberg timeTH as our only input. For bootstrap time
Tmax=2TH stop solid curved, the spectral peak heights already
stand out by four orders of magnitude above the background.
The root mean squared error in the bootstrap-predicted peak
locations drops from 0.034D whenTmax=TH to 0.0064D for
Tmax=2TH, whereD is the mean level spacing. We may con-
trast this with the result, indicated by the dashed curve, of
merely transforming and smoothing the same correlation in-
formation, up throughTmax=2TH, but without the benefit of
bootstrapping. Here the resolution is very poor, and we are
far from being able to detect, for instance, the two doublets
nearE=0.4515 and 0.4535.

In contrast with the map model studied in Sec. IV A, in
the Hamiltonian system investigated here we must discretize
time explicitly by introducing a new time scaleT0. The re-
sults of the calculation, however, are unaffected by the
choice ofT0, as long asT0," /dE, wheredE is the energy
uncertainty in the wave packetsfi. Equivalently, the time
stepT0 must be chosen short enough so that the self-overlaps
CiisT0d are large due to free-flight dynamics.

A second key difference with the map model is that quan-
tum motion in the Barbanis potential is described by reso-
nances rather than bound states. Indeed, by comparing the
upper two curves in Fig. 4, we see that in theTmax=TH boot-
strapped spectrum, the widths of several peaksse.g., the
rightmost one nearE=0.4612d are already dominated by the
intrinsic resonance widths rather than by any error associated
with the time cutoff. In general, the efficiency of the boot-
strapping approach increases as one considers systems that
are more open, since it is sufficient to choose a bootstrap
time Tmax that will generate accurate dynamics to time
Tbreak,Tdecay, where Tdecay is the intrinsic lifetime of the
resonances, possibly shorter thanTH.

Finally, a third major difference between perturbed cat
maps and the Barbanis potential is the presence of regular as
well as chaotic states in the Barbanis spectrum. By choosing
the test wave packetsfi appropriately, one may optimally
resolve states in the phase space region that are of greatest
interest in a given application. For example, in ordinary scar
theory, one may begin with a wave packet centered on a
specific periodic orbitf3g, with the aim of obtaining optimal
information on the structure of wave functions with high
intensity on that orbit and their associated eigenvalues; the
price to be paid is the suppression of the “antiscarred” eigen-
states that have anomalously low intensity on the same orbit.
Here, we have randomly placed the six test wave packets in
the chaotic portion of phase space, improving our ability to
resolve the chaotic states, but necessitating the use of longer
bootstrap timesTmax to identify spectral peaks associated

FIG. 3. The break timeTbreak of the bootstrapping approxima-
tion, defined byEsTbreakd=1, is plotted for M =2 and several
choices ofTmax. Open and closed squares represent system sizes
N=64 and 128, respectively. The ensemble of systems is the same
as in the previous two figures. The straight line is the theoretical
predictionTbreak,Tmax

sM+1d/2,Tmax
3/2 of Eq. s26d.

FIG. 4. The local density of states summed overM =6 wave
packets located at energyE=0.46 in the Barbanis potential of Eq.
s21d, SsEd=o j=1

6 Resi /pdGjj sEd, is computed using the bootstrap-
ping approximation in accordance with Eq.s9d. The three solid
curves from bottom to top correspond to different bootstrap times
used in the bootstrapping calculation:Tmax=TH /2, TH, and 2TH. For
comparison, the result of Laplace transforming the correlation func-
tion through timeTmax=2TH, without bootstrapping, is shown as a
dashed curve. Each spectrum has been scaled by an arbitrary con-
stant to allow for easy comparison on a single plot. In each case a
smoothing time scalet,Tbreakhas been chosen to remove unphysi-
cal oscillations in the spectrum in the energy range shown. The
dotted vertical lines indicate the locations of the exact resonance
peaks, obtained by takingTmax→`.
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with regular wave functions, such as the very narrow reso-
nance peak nearE=0.4536.

In this context we note also that, in the case of scar theory,
little or no benefit is gained by following several wave pack-
ets launched along the same weakly unstable periodic orbit,
since they all exhibit very similar time evolution, and share
nearly identical local density of statesf19g. From a boot-
strapping perspective, we may consider two wave packets

nearly related by time evolution, e.g.,uf2l<e−iĤt/"uf1l.
Then the probability 1−PsTmaxd of Eq. s22d for returning to
the subspace spanned byf1 andf2 by timeTmax is nearly the
same as the probability of returning tof1 itself, assuming
Tmax@t. The rapid decrease in the “lost probability”PsTmaxd
with increasing number of wave packetsM, as indicated by
Eq. s23d, depends entirely on the wave packets behaving in
an uncorrelated manner. Thus, the bootstrapping procedure
for multiple wave packets is most effective when the wave
packets are chosen from different regions of phase space to
avoid obvious correlations.

C. Influence of noise

Noise in the input signal may be an important factor in
specific applications of the bootstrapping procedure, for ex-
ample where a semiclassical or other approximation is used
to calculate the short-time correlation function. We return to
the quantum map model discussed in Sec. IV A and intro-
duce random noise into the short-time correlation function,
as indicated in Eq.s13d. The random error matrix elements
Dijsmd in Eq. s13d are independent Gaussian random vari-
ables of zero mean and variance 1/N, whereN is the Hilbert
space dimension, so thatuDijsmdu2= uCijsmdu2 at long timesm.
Then the dimensionless parametere characterizes the relative
size of the noise. A spectrum may be produced by bootstrap-
ping the noisy short-time data. The results of such a calcula-
tion are presented in Fig. 5. We see that the spectral recon-
struction is quite robust for smalle, and breaks down at
arounde=0.2 or 0.3, independent ofN andM.

To study more carefully the breakdown in the accuracy of
the bootstrapped spectrum and its dependence on parameters
N and M, we need to define a quantitative measure of the
error in the bootstrapped spectrum. Consider a local density
of statesSsEd reconstructed from the exact correlation func-
tion known for tøTmax and a local density of statesSesEd
reconstructed from the same input but with added noise char-
acterized bye as in Eq.s13d. We may define the dimension-
less error ratio

Zsed =
E dEfln SesEd − ln SsEdg2

E dEfln SsEdg2

, s27d

which measures the error induced in the reconstructed spec-
trum by noise of sizee in the input. We note that it is appro-
priate to focus on the logarithm of the reconstructed spec-
trum, because the spectrum itself is dominated by sharp
peaks, as seen in Fig. 5. The quantityZsed is shown in Fig. 6,
for the same parameters as were used earlier in Fig. 5. Not

surprisingly, we observe growth in the spectral error with
increasing noisee, but, more importantly, this error is almost
independent of system sizeN and number of wave packetsM
fat e=0.3, Zsed varies at most by 30% asN changes by a
factor of 4 andM by a factor of 3g. The same results have
been observed for other system parameters. This robustness
implies that input with noise of a small but finite sizee may
be used in the semiclassical limitN→` sequivalently, "
→0d. Obviously, an even more favorable situation exists
when the noise levele decreases with increasingN. An im-

FIG. 5. The local density of states summed overM randomly
placed wave packets,SsEd=o j=1

M Resi /pdGjj sEd, is computed for the
quantum map of Eq.s19d, with wq=wp=1, Kq=0.2, andKp=−0.3,
using the bootstrapping approximation after noise has been intro-
duced into the short-time input data. From top to bottom, the three
sets of curves correspond tosad N=128, M =2, sbd N=128, M =6,
and scd N=512,M =2, whereN is the system size or Hilbert space
dimension. Within each set, the topssolidd curve is the recon-
structed spectrum in the absence of noise, and the three dashed and
dotted curves, from top to bottom, indicate reconstructed spectra for
the same system with the dimensionless noise parameter set toe
=0.1, 0.2, and 0.3. Each spectrum has been scaled by an arbitrary
constant to allow for easy comparison on a single plot. In all cases,
the spectrum is reconstructed from the correlation function fort
øTmax=3TH /M.

FIG. 6. The errorZsed in the reconstructed spectrum for the
quantum map of Eq.s19d is computed as a function of the noise
level e in the input correlation function. All parameters are identical
to those in Fig. 5. The solid curve indicates system sizeN=128 with
M =2 wave packets, the dashed curve is forN=512 withM =2, and
the dotted curve is forN=128 with M =6. In all cases, the noise-
free spectrumSsEd and the noisy spectrumSesEd are both recon-
structed from the correlation function fortøTmax=3TH /M.
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portant example of the latter situation exists when the
“noise” results from using a semiclassicalsstationary phased
approximation for the short-time dynamicstøTmax. Thene
,", which decreases withN. Therefore short-time evolution
computed within a semiclassical approximation may be used
with confidence to obtain stationary properties of the exact
quantum system.

V. BOOTSTRAPPED WAVE FUNCTION STATISTICS

We now consider the situation where known short-time
dynamical information is insufficient for resolving individual
eigenstates, and the focus therefore shifts to predictions of a
statistical nature. In other words, we consider an ensemble of
systems that all sharesperhaps approximatelyd a given short-
time dynamics, and ask what information can be extracted
about the distribution of wave functions in systems drawn
from this ensemble.

A. Inverse participation ratio calculations

The simplest quantitative measure of wave function struc-
ture is the inverse participation ratiosIPRd or second moment
of the wave function intensitiesf20g: IC=Noi=1

N zkfiuClz4,
whereC is an eigenstate,N is the Hilbert space dimension,
the sum is over a complete basisfi, and we impose the usual
normalization conditionoi=1

N zkfiuCulz2=1. The IPRI mea-
sures the degree of wave function localization, ranging from
1 for a delocalized wave function having uniform overlaps
with all basis states toN for a completely localized stateC.
RMT predictsI=2 in the absence of time-reversal or other
symmetry. Similarly, for each basis statef we may define a
local IPR sLIPRd asLf=No j=1

N zkfuC jlz4, where the sum ex-
tends over eigenstatesf4g; the LIPRLf measures the degree
of localization associated with a specific basis elementf and
is proportional to the average long-time return probability
zkfufstdlz2 as t→`.

Extending arguments developed originally for periodic or-
bit scarsf3,4g, we may interpret long-time dynamics in a
chaotic system as a convolution of known short-time recur-
rences with quasirandom long-time recurrences,

kfufstdl < o
t=−T

T

kfufstdlrfst − td, s28d

where for simplicity we have assumed discrete-time dynam-
ics, the sum overt extends to some scaleT that includes as
much as possible of the nonrandom dynamics of interest but
is still short compared with the Heisenberg timeTH, and
rfst8d are Gaussian random independent variables, associated
with nonlinear long-time recurrences. For the LIPR, we ob-
tain

Lf < 2 o
t=−T

T

zkfufstdlz2 s29d

=2F1 + 2o
t=1

T

uCffstdu2G s30d

in the notation of Sec. II, where the overall prefactor of 2 is
the RMT result in the absence of time-reversal symmetry.
The autocorrelation function or return amplitudeCffstd may
be computed from theB matrices using the bootstrapping
formulas of Eqs.s6d and s7d, or we may explicitly write

Lf < 2F1 + 2o
t=1

` U o
t1=1

Tmax

Bffst1ddst1 − td

+ o
t1,t2=1

Tmax

o
f8

Bff8st2dBf8fst1ddst1 + t2 − td + ¯U2G .

s31d

Here the upper limitT in the sum overt may safely be taken
to infinity, as long as the bootstrap timeTmax!TH /M, so that
most of the probability is lost by the Heisenberg time, and
times t,TH do not contribute significantly to the sum. We
note that the second- and higher-order bootstrapping terms
implicitly include revivals at times longer thanTmax, al-
though only the correlation function up toTmax is used as
input to the calculation. The bootstrapping formula makes
optimal use of the available short-time information, and good
agreement may be obtained even for fairly short bootstrap
timesTmax.

As a specific example, we consider a quantum map de-
fined by Eq.s17d, with kinetic termTspd= 1

2p2 and kicked
potential

Vsqd = −
1

2
sq − q0d2 + v0F q

q0
Qsq − q0d +

1 − q

1 − q0
Qsq0 − qdG ,

s32d

where as beforeq andp both range from −p to +p, andQsxd
is the usual step function defined byQsxd=1 for x.0 and
Qsxd=0 otherwise. The dynamics is fully chaotic and has no
period-1 classical orbits, but does have a diffractive orbit at
q=q0, p=0, associated with a cusp in the kick potential. The
bootstrapping calculation is performed for a single wave
packet centered on this diffractive orbit. In Fig. 7, we calcu-
late the LIPR for this wave packet, as a function of parameter
v0, exactly and in the bootstrapping approximation. We see
immediately that RMTsequivalent to the bootstrapping pre-
diction with Tmax=0d severely underestimates the degree of
wave function localization whenv0,1 and the diffractive
orbit is consequently strong. Bootstrapping the one-step re-
currence onlysTmax=1d greatly overestimates the effect, but
the Tmax=2 calculation, which incorporates information
about one-step and two-step new recurrences, already gives a
good approximation to the exact answer over the entire range
of v0. We note that the bootstrapping has been performed
here using one- and two-step time correlation data for a
single wave packet; obviously the results can only improve if
multiple wave packets are used simultaneously with the
same bootstrap timeTmax.

We now fix v0=0.59 and repeat the above bootstrapping
calculation for single wave packets centered at various loca-
tions in phase space. In each case, we find the exact LIPR by
diagonalizing the evolution matrix. We also predict the LIPR
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using the bootstrapping approximation withTmax=3, i.e., the
recurrences for three time steps are computed exactly, boot-
strapped to obtain long-time behavior, and then used to esti-
mate the local inverse participation ratio in accordance with
Eq. s30d. The results are shown in Fig. 8. Here, the bright
spot slightly to the left of center is the localization peak
associated with a diffractive orbit atq=q0=−0.2p, p=0. We
observe that the bootstrapping procedure allows not only this
peak but most significant features of the localization land-
scape to be well resolved byTmax=3.

B. Wave function intensity distribution

A prescription similar to the above may be used to com-
pute higher moments of the intensity distribution beyond the
standard inverse participation ratio; instead, we turn our at-
tention to the intensity distribution itself. Knowledge of such
a distribution is essential, for example, to the understanding
of resonance width or decay rate statistics in a weakly open
system. In the context of scarring, it has been shown that the
probability distribution of wave function intensities may be
obtained by combining a smooth spectral envelope con-
structed from the short time dynamics with Gaussian random
fluctuations on fine energy scalesf21g. More generally,
whenever a separation of scales exists between nonrandom
short-time dynamics and quasirandom long-time behavior,
we may write the local density of statessstrength functiond
for wave packetf as f9g

Resi/pdGffsEd = o
n

dsE − EndzkfuCnlz2

< o
n

dsE − EndSf
smoothsEduRnu2, s33d

where

Sf
smoothsEd = o

t=−T

T

kfufstdleiEt/" s34d

is a Fourier transform of the short-time signal andRn are
independent Gaussian random variables with variance 1/N
sreal or complex depending on the presence or absence of
time-reversal symmetry, respectivelyd. The above expres-
sions assume no symmetry, with the possible exception of
time reversal, and must be appropriately modified in the
presence of such symmetries, including parity invariancef4g.
The multiplication in Eq.s33d of a known short-time signal
by a long-time signal assumed to be quasirandom is the
energy-domain counterpart of the convolution formula ap-
pearing in Eq.s28d.

In the bootstrapping context, we may obtain the short-
time envelope using Eqs.s9d and s10d, where exact new re-
currencesBsmd are replaced byBL,tsmd as defined by Eq.
s11d for some choice ofTmax=LT0 and a smoothing time
scale t. This is the same procedure we used to construct
approximate bootstrapped spectra in Sec. IV B, except that
there the bootstrap timeTmax was chosen sufficiently long to
resolve individual states,Tmax.TH /M, while here we may
takeTmax to be only a small multiple of the one-step timeT0.

Once a short-time local density of states envelope
Sf

smoothsEd is known, we may directly construct the probabil-
ity distribution of wave function intensitiesI = zkfuCnlz2. We
need only to multiply the envelope heightsSf

smoothsEd, with
uniformly distributed energiesE, by random factorsuRu2
whereR is Gaussian distributedsand uRu2 is therefore expo-
nentially distributed for complexRd:

PsId =
1

E2 − E1
E

E1

E2

dEE
0

`

dsuRu2de−uRu2dsI − Sf
smoothsEduRu2d.

s35d

FIG. 8. The local inverse participation ratiosLIPRd L is plotted
as a function of position and momentum for the potential of Eq.
s32d, with system sizeN=64, cusp locationq0=−0.2p, and cusp
strengthv0=0.59. The exact LIPR landscape is shown in the upper
panel, while the lower panel represents the prediction of a boot-
strapping procedure withTmax=3. The color scale ranges fromL
=2 sblackd to L=5 swhited.

FIG. 7. The local inverse participation ratiosLIPRd at the loca-
tion of the cusp is calculated for the diffractive potential of Eq.s32d,
for system sizeN=64, one wave packet centered on the cusp at
q0=−0.2p, and several values of the kick parameterv0. The exact
data are averaged over boundary conditions for each value ofv0.
The bootstrapping prediction, using Eq.s30d for one wave packet
centered on the cusp, is shown forTmax=1 and 2, in units of the
kick period. The RMT prediction, equivalent to bootstrapping with
Tmax=0, provides a baseline for comparison.
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Typical examples of the resulting intensity distribution are
shown in Fig. 9. Here we use the same system and wave
packet location as in Fig. 7, but fix kick parameterv0 at the
value 0.2. The short-time envelopeSf

smooth is constructed ei-
ther using only one-step new recurrencessbootstrap time
Tmax=T0=1d or using one- and two-step new recurrences
sbootstrap timeTmax=2T0=2d. TheTmax=1 short-time enve-
lope already results in a predicted intensity distribution that
is a great improvement over the RMT prediction, correctly
predicting an excess of very large and very small wave func-
tion intensities at the cusp. TheTmax=2 envelope predicts an
intensity distribution that is in even better agreement with
actual data.

C. Wave function correlations

The bootstrapping approach lends itself naturally to the
consideration of observables beyond the statistics of indi-
vidual wave function intensitiesI = zkfuClz2. As a simple
example, we may consider the covarianceCf1,f2
=No j=1

N zkf1uC jlz2zkf2uC jlz2−1, where f1 and f2 are two
wave packets and the sum is once again over the eigenstates.
Obviously the covariance is a generalization to two wave
packets of the local inverse participation ratio discussed ear-
lier: Lf=Cf,f+1. The covariance or correlation between
wave function intensities at two points is clearly important,
for example, for understanding the statistics of conductance
peak heights in a weakly open quantum dot with two leads
f7g; it is also relevant for analogous reaction rate calculations
or for the computation of interaction matrix elements.

Letting ufl=s1/Î2dsuf1l+eiuuf2ld, using Eq.s29d for Lf,
and averaging over the relative phaseu, we obtain

Cf1,f2
< o

t=−T

T

fzkf1uf2stdlz2 + kf1uf1stdlkf2stduf2lg − 1

= uCf1f2
s0du2 + 2o

t=1

T

uCf1f2
stdu2

+ 2 Reo
t=1

T

Cf1f1
stdCf2f2

* std. s36d

Two types of terms are present in Eq.s36d: ones associ-
ated with the short-time probability for evolving from state
f1 to statef2 or vice versa, and ones associated with a
correlation between the individual short-time autocorrelation
functions for f1 and f2. Once again, the correlation func-
tions Cff8std may be computed using the bootstrapping for-
mula given by Eq.s7d or Eq. s8d, where the “new” recur-
rencesBsmd are known up to the bootstrap timeTmax=LT0,
as in Eq.s11d. As in the LIPR calculation, the upper limitT
of the sum in Eq.s36d may be taken to infinity, as long as
Tmax,TH /M. For the covariance calculation, it is most con-
venient to perform the bootstrapping with justM =2 initial
wave packets:f1 andf2.

As an example, we consider another quantum map, de-
fined by Eq.s17d with kinetic term

Tspd =
1

2
sp − p0d2 + bFsin 2sp − p0d −

1

2
sin 4sp − p0dG

s37d

and periodic kick

Vsqd =5
−

a

2
sq + p/2d2 + v0

q + p

p/2
, − p , q , − p/2,

−
a

2
sq + p/2d2 + v0

q0 − q

q0 + p/2
, − p/2 , q , q0,

−
a

2
sq − p/2d2 +

3

2
v0

q − q0

p/2 − q0
, q0 , q , p/2,

−
a

2
sq − p/2d2 +

3

2
v0

p − q

p/2
, p/2 , q , p.

6
s38d

This potential has a cusplike maximum of heightv0 at q=
−p /2 and another of height 3v0/2 atq=p /2, resulting in the
possibility of diffractive periodic motion betweensq=−p /2,
p=p0d and sq=p /2, p=p0d. We compute the covariance be-
tween wave function intensitieszkf1uClz2 and zkf2uClz2,
wheref1 andf2 are Gaussian wave packets centered at the
two points in phase space. The results are presented in Fig.
10, as a function of the cusp height parameterv0. Once
again, the bootstrapping prediction is shown for bootstrap
time Tmax=1 or 2, in units where the kick periodTkick is set
to unity. The RMT prediction, corresponding to bootstrap
time Tmax=0, is shown for comparison. Just as in the LIPR
and intensity distribution calculations, rapid convergence is
observed with increasingTmax, and almost all relevant infor-
mation is already obtained by bootstrapping the one-step and
two-step dynamics.

FIG. 9. The distribution of wave function intensitiesI
= zkfuCnlz2 for the kicked map of Eq.s32d with system sizeN=64,
cusp locationq0=−0.2p, and kick parameterv0=0.2 is shown,
wheref is a Gaussian wave packet centered on the cusp atq=q0,
p=0. The solid curve shows the exact data, obtained by diagonal-
izing time evolution matrices, and averaging over systems with dif-
ferent boundary conditions. The bootstrapped predictions are com-
puted using Eq.s35d, where the smooth envelope is obtained from
bootstrap timeTmax=1 or Tmax=2, for a single wave packetM =1.
The RMT prediction, equivalent to bootstrapping withTmax=0, pro-
vides a baseline for comparison.
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VI. SUMMARY

Short-time dynamical information, either of classical ori-
gin or otherwise, inevitably leaves its imprint on the long-
time behavior and stationary properties of a quantum system.
The bootstrapping approach allows this information to be
processed systematically, for one or an arbitrary numberM
of initial wave packets. Because multiple iterations of the
known short-time dynamics are included, the resulting spec-
tral accuracy can be much greater than what one would ob-
tain, for example, by a simple Fourier transform of a short-

time signal. At the same time, the procedure is extremely
efficient, requiring at each energy linear algebra operations
involving only M 3M matrices, and independent of the total
size N of the Hilbert space. There is no assumption of uni-
tarity in the dynamics, and the procedure works equally well
for closed or open systems. Robustness to errors in the short-
time signal implies, for example, that reliable calculations
can be performed when the short-time correlations are com-
puted in a small-" or other approximation relevant to a given
problem.

The bootstrap timeTmax can be varied to extract maxi-
mum information from the least amount of input data. At
small values ofTmax, the approach can be viewed as a gen-
eralization of standard periodic orbit scar theory, leading to
statistical prediction beyond RMT for local density of states
and wave function statistics. Reliable quantitative predictions
can be obtained for inverse participation ratios, wave func-
tion intensity distributions, and wave function correlations,
even when the short-time dynamics is of nonclassical origin.
Increasing eitherTmax or M allows for a systematic inclusion
of additional correlations. Once the productMTmax becomes
comparable to the Heisenberg timeTH, it becomes possible
to go beyond statistical predictions to resolve individual
eigenstates and energy levels, with an accuracy scaling ex-
ponentially withMTmax/TH. The initial wave packetsfi can
be chosen optimally to minimize redundancy in the short-
time correlations, and to obtain maximal information in a
specific basis or for wave function structure in a given sub-
space of the original Hilbert space.
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